Name:

Period:

Seat#:

Worksheet #5

Mathematical Questions

- Show your work when applicable! Show units!
- Get an actual answer, including units! Box your answer!
- Some answers are provided. They are underlined at the end.
- For rate order type problems be sure to include the following information. Your work does not need to be in chart format like this, but it does need to have all the information clearly identified if not using the chart format. Here is an example of what needs to be shown.

Trials	Which [] is	Which [] is being changed and	What factor is the	Order based
being used	held constant	by what factor is it changed by	rate changed by	on rate data
1&3	[H ₂]	[O ₂] x 2	x 2	1

Dougherty Valley HS Chemistry Kinetics – More Rate Laws

 4) Determine rate law and rate constant: H₂O₂ + 2HI → 2H₂O + I₂ 			 5) Determine rate law and rate constant: H₂ + I₂ → 2HI 				
<u>Trial</u> 1 2 3	- <u>[H₂O₂]</u> 0.10 M 0.10 M 0.20 M	[HI] 0.10 M 0.20 M 0.10 M	rate (mol/L/sec) 0.0076 0.0152 0.0152	Trial 1 2 3	[H ₂] 1.0 mol/L 1.0 2.0	[I ₂] 1.0 mol/L 2.0 2.0	<u>rate (mol/L/sec)</u> 0.20 0.40 0.80
6) Determine rate law and rate constant: $2NO_2 + F_2 \rightarrow 2NO_2F$			7) Determine rate law and rate constant: $2NO + Br_2 \rightarrow 2NOBr$				
Trial	[NO ₂]	[F ₂]	rate (mol/L/min)	Trial	[NO]	[Br ₂]	rate (mol/L/hr)
1	1.0 mol/L	1.0 mol/L	1.0×10^{-4}	1	1.0 mol/L	1.0 mol/L	1.30×10^{-3}
3	1.0	2.0	2.0×10^{-4}	3	4.0	2.0	4.16 x 10 ⁻²
8) What ha			if the temperature is		the rate of room	tion for H	
o) What happens to the rate of a reaction if the temperature is increased by 30°C?			hydrogen gas reacts with chlorine gas to form hydrogen chloride.				
				Time (s)	[H ₂] (M)	[Cl ₂] M	[HCI] (M)
				0.00	0.030	0.050	0.000
10) What ha increase	ppens to the rat	e of a reaction 340K?	if the temperature is				

Dougherty Valley HS Chemistry Kinetics – More Rate Laws

 11) Nitrogen monoxide gas and hydrogen gas react according to the rate law: Rate = k[NO]²[H₂] How does the rate change if: 		e)	The volume of the container is doubled?		
a)	The concentration of hydrogen is doubled?	f)	The temperature is increased?		
b)	The concentration of NO is doubled?	g)	The concentration of NO is doubled while the concentration of H_2 is cut in half?		
c)	The concentration of hydrogen is cut in half?				
d)	The volume of the container is cut in half?	h)	The concentration of H ₂ is doubled while the concentration of NO is cut in half?		
12) The Z is Hov	rate law of a particular reaction between gases X, Y, and found to be Rate = $k[X]^0[Y]^2[Z]$ v does the rate change if:	e)	The volume of the container is doubled?		
a)	a) The concentration of X is doubled?		The temperature is increased?		
b) The concentration of Y is tripled?		g)	[X] is quadrupled while [Y] and [Z] are doubled?		
c) The concentration of Z is quadrupled?		h)	[Z] is cut in half while [Y] is doubled?		
d) The volume of the container is cut in half?		i)	[Y] and [Z] are tripled while [X] is cut in thirds?		
 13) Rate data for the gaseous phase decomposition of dinitrogen pentoxide into nitrogen dioxide and oxygen gas is given below. Time [O₂] (M) 					
	0 0 600 0.002				
	1200 0.004 1800 0.005				
	3000 0.006 4200 0.0072				
a) b)	Write the rate expression for the reaction Calculate the rate for $[O_2]$ over each interval (from 0-				
c)	600, 600-1200, etc) C) Calculate the average rate over the time frame of the				
	entire reaction				